Bentonitin Karıştırmalı Ortam Değirmeni ile Kuru Öğütülmesi

Author :  

Year-Number: 2021-Özel Sayı
Yayımlanma Tarihi: 2021-12-31 15:11:12.0
Language : İngilizce
Konu : Seramik
Number of pages: 62-69
Mendeley EndNote Alıntı Yap

Abstract

Bu çalışmada bentonitin kuru öğütülmesi için pim tipi dikey karıştırma ortamlı değirmen kullanıldı. Tane boyutu dağılımına ve enerji tüketimine (Ec) etkisi için öğütme süresi ve karıştırma hızı araştırılırken bilye ve bentonit şarj oranı sırasıyla %60 ve %40 olarak sabit tutuldu. Bentonitlerin potansiyel kuru kullanımları için ham bentonitlerin dikey karıştırmalı öğütücüler kullanılarak ultra ince kuru öğütülebildiği gözlemlendi. Deneysel sonuçlar, 128.1 kWh/ton enerji tüketimi ile yaklaşık 10 µm d80 değerine sahip öğütülmüş bentonit ürününün elde edildiğini ortaya koydu. Optimum çalışma parametreleri %60 bilye şarjı, %40 bentonit şarjı, 600 rpm karıştırma hızı ve 20 dk öğütme süresi olarak seçildi.

Keywords

Abstract

In this study, pin-type vertical stirred media mill was used to perform the dry grinding of bentonite. Grinding time and stirring speed were investigated for the effect on the particle size distribution and energy consumption (Ec) while ball charge and bentonite charge were kept constant as 60% and 40%, respectively. It was observed that raw bentonites can be ultra-fine dry grinded using vertical stirred media mills for the potential dry uses of bentonites. The experimental results revealed that a ground bentonite product having a d80 value of about 10 µm was obtained with 128.1 kWh/ton energy consumption. Optimum operational parameters were selected as 60% ball charge, 40% bentonite charge, 600 rpm stirring speed, and 20 min grinding time.

Keywords


  • [1] H. Çiftçi, “An introduction to montmorillonite purification”, In: Montmorillonite clay, Eds. F. Uddin, London, IntechOpen, pp. 1-7, 2021.

  • [2] H. Çiftçi, B. Ersoy, and A. Evcin, “Purification of Turkish Bentonites and Investigation of the Contact Angle, Surface Free Energy and Zeta Potential Profiles of Organo-Bentonites as a Function of CTAB Concentration,” Clays and Clay Minerals, vol. 68 no. 3, pp. 250-261, 2020.

  • [3] J. H. Yang, J. H. Lee, H. J. Ryu, A. A. Elzatahry, Z. A. Alothman, and J. H. Choy, “Drug-clay nanohybrids as sustained delivery systems,” Applied Clay Science, vol. 130, pp. 20-32, 2016.

  • [4] J. Nones, H. G. Riella, A. G. Trentin, and J. Nones, “Effects of bentonite on different cell types: A brief review,” Applied Clay Science, vol. 105-106, pp. 225-230, 2015.

  • [5] S. Jain, and M. Datta, “Oral extended release of dexamethasone: Montmorillonite-PLGA nanocomposites as a delivery vehicle,” Applied Clay Science, vol. 104, pp. 182-188, 2015.

  • [6] S. Jayrajsinh, G. Shankar, M. Pharm, Y. K. Agrawal, and L. Bakre, “Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review,” Journal of Drug Delivery Science and Technology, vol. 39, pp. 200-209, 2017.

  • [7] S. E. Elmore, N. Mitchell, T. Mays, K. Brown, A. Marroquin-Cardona, A. Romoser, and T. D. Phillips, “Common African cooking processes do not affect the aflatoxin binding efficacy of refined calcium montmorillonite clay,” Food control, vol. 37, pp. 27-32, 2014.

  • [8] V. Summa, and F. Tateto, “Clay minerals as adsorbents of aflatoxin M1 from contaminated milk and effects on milk quality,” Applied Clay Science, vol. 88, pp. 92-99, 2014.

  • [9] W.K. Mekhamer, “Stability changes of Saudi bentonite suspension due to mechanical grinding”, Journal of Saudi Chemical Society, vol. 15, pp. 361-366, 2011.

  • [10] O. A. Orumwense, and E. Forssberg, “Superfine and ultrafine grinding, A literature survey, J. Mineral Processing and Extractive Metall Rev, vol. 11, pp. 107-127, 1992.

  • [11] J. Lichter, and G. Davey, “Selection and sizing of ultrafine and stirred grinding mills,” Advances in Comminution. Colorado, Society for Mining, Metallurgy and Exploration, 2006.

  • [12] K. Ohenoja, M. Illikainen, and J. Niinimäki, “Effect of operational parameters and stress energies on the particle size distribution of TiO2 pigment in stirred media milling,” Powder Technology, vol. 234, pp. 91–96, 2013.

  • [13] A. Jankovic, “Variables affecting the fine grinding of minerals using stirred mills,” Minerals Engineering, vol. 16, pp. 337-345, 2003.

  • [14] O. Y. Toraman, and D. Katırcıoglu, “Study on the effect of process parameters in stirred ball mill,” Advanced Powder Technology, vol. 22, pp. 26-30, 2011.

  • [15] W. D. Keller, and R. C. Reynolds, A. Inoue, “Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy,” Clays and Clay Minerals, vol. 34, pp. 187-197, 1986.

  • [16] G. Brown, and G. W. Brindley, “X-ray diffraction procedures for clay mineral identification,” in: G. W. Brindley, G. Brown (Eds.), Crystal Structures of Clay Minerals and their X-ray Identification, Monograph 5 (pp. 305–360), London, Mineralogical Society, 1980.

  • [17] R. E. Grim, “Clay Mineralogy. International series in the earth and planetary sciences,” pp. 596, New York, Mc Graw-Hill Book Co. Inc., 1968.

  • [18] T. Santosh, K. Rahul Soni, C. Eswaraiah, D. S. Rao, and R. Venugopal, “Optimization of stirred mill parameters for fine grinding of PGE bearing chromite ore,” Particulate Science and Technology,” vol. 39, no. 6, Jul., pp. 663-675, 2020. DOI: 10.1080/02726351.2020.1795016

  • [19] C. Eswaraiah, N. Venkat, B. K. Mishra, and R. Holmes, “A comparative study on a vertical stirred mill agitator design for fine grinding.” Separation Science and Technology, vol. 50, pp. 39-48, 2015. doi:10.1080/01496395.2015.1065888.

  • [20] O. Y. Toraman, “Dry fine grinding of calcite powder by stirred mill,” Particulate Science and Technology, vol. 31 no. 3, pp. 205-209, 2013. doi:10.1080/02726351.2012.694135.

  • [21] H. Hacıfazlıoğlu, and A.V. Korkmaz, “Performance comparison of stirred media mill and ball (BOND) mill in bauxite grinding,” Particulate Science and Technology, vol. 38, no. 4, pp. 404-408, 2020. DOI: 10.1080/02726351.2018.1547342

  • [22] O. Altun, H. Benzer, and U. Enderle, “Effects of operating parameters on the efficiency of dry stirred milling,” Minerals Engineering, vol. 43-44, pp. 58-66, 2013. doi:10.1016/j.mineng.2012.08.003

  • [23] M. Hasan, S. Palaniandy, M. Hilden, and M. Powell, “Calculating breakage parameters of a batch vertical stirred mill,” Minerals Engineering, vol. 111, pp. 229-237, 2017. doi:10.1016/j.mineng.2017.06.024.

                                                                                                                                                                                                        
  • Article Statistics