Borlanmış Krom-Kobalt Alaşımlarının Yüzey Özelliklerinin İncelenmesi

Author :  

Year-Number: 2021-Özel Sayı
Yayımlanma Tarihi: 2021-12-31 13:46:02.0
Language : İngilizce
Konu : Yüzey Karakterizasyonu
Number of pages: 36-41
Mendeley EndNote Alıntı Yap

Abstract

Çalışmada %10 Co içeren Co-Cr alaşımı 900 °C sıcaklıkta 1.5-4.5 saat borlama yöntemiyle başarılı bir şekilde borlanmıştır. Borlama sonrası bor tabakalarının özellikleri XRD, SEM, yüzey pürüzlülüğü, yoğunluk ve mikrosertlik test cihazı ile incelenmiştir. Cr-Co alaşımlarında borlamadan sonra CrB ve Cr2B ana baskın fazlar olarak ortaya çıkmıştır. SEM'den sonra bor tabakalarında testere dişi yapıları oluşmuştur. Bor tabakasının kalınlığı işlem süresine bağlı olarak 32,24 ile 143,84 µm arasında değişmektedir. Bor tabakası, Cr-Co alaşımı için 1752 ila 1865 HV0.05 arasında değişen bir sertliğe sahipken, borlama öncesinde ise vickers sertlik değeri 194 HV0.05 idi.

Keywords

Abstract

In the study, Co-Cr alloy containing 10% Co was successfully borided by boriding method at 900 °C temperature for 1.5-4.5 hours. After boriding, the properties of boron layers were investigated with XRD, SEM, surface roughness, density and microhardness tester. After boriding on Cr-Co alloys, CrB and Cr2B emerged as the main dominant phases. After SEM, saw-tooth structures were formed in the boron layers. The thickness of boride layer varied from 32,24 to 143.84 μm depending on the process time. Boride layer has a hardness varied from 1752 to 1865 HV0.05 for Cr-Co alloy, whereas the Vickers hardness value of the untreated Cobalt and Chromium were 194 HV0.05 respectively.

Keywords


  • [1] X. Dong, N. Li, Y. Zhou et al. “Grain boundary character and stress corrosion cracking behavior of Co-Cr alloy fabricated by selective laser melting”, Journal of Materials Science & Technology, vol. 93, 244- 253, 2021.

  • [2] A. Amanov, “Effect of post-additive manufacturing surface modification temperature on the tribologicaland tribocorrosion properties of Co-Cr-Mo alloy for biomedical applications”, Surface and Coatings Technology, vol. 421, 127378, 2021.

  • [3] T. Aldhohrah, J Yang, J. Guo et al., “Ion release and biocompatibility of Co-Cr alloy fabricated byselective laser melting from recycled Co-Cr powder: An in vitro study”, The Journal of Prosthetic Dentistry, In Press, 2021.

  • [4] Y. Han, F. Liu, K. Zhang, et al. “A study on tribological properties of textured Co-Cr-Mo alloy forartificial hip joints”, International Journal of Refractory Metals and Hard Materials, vol. 95, 105463, 2021.[5] A. Gabriella C. Presotto, J. M. Cordeiro, et al. “Feasibility of 3D printed Co–Cr alloy for dental prostheses applications”, Journal of Alloys and Compounds, vol. 862, 158171, 2021.

  • [6] Q. Hu, Y. Liu, Y. Pan, et al. “Assessments of ionic release and biocompatibility of Co-Cr and CP-Tiproduced by three different manufacturing techniques”, Materials Today Communications, vol. 30, 103100, 2022.

  • [7] Y. Zhou, Q. Sun, X. Dong, et al. “Microstructure evolution and mechanical properties improvement ofselective laser melted Co-Cr biomedical alloys during subsequent heat treatments”, Journal of Alloys and Compounds, vol. 840, 155664, 2020.

  • [8] I. Gunes, I. Yıldız, “Rate of Growth of Boride Layers on Stainless Steels”, Oxidation Communication, vol. 38(4/A), 2189-2198, 2015.

  • [9] I. Campos-Silva, D. Bravo-Bárcenas, H. Cimenoglu, et al. “The boriding process in CoCrMo alloy:Fracture toughness in cobalt boride coatings”, Surface and Coatings Technology, vol. 260, 362-368, 2014.[10] I. Yıldız, I. Gunes, “%3,0 Mg içeren Borlanmış Co-Mg Alaşımının Yüzey Özelliklerinin İncelenmesi”, El-Cezerî Journal of Science and Engineering, vol: 6 (3), 533-542, 2019.

  • [11] M. A. Doñu-Ruiz, N. López-Perrusquia, A. Renteria-Salcedo, et al., “Tribocorrosion behavior ofboride coating on CoCrMo alloy produced by thermochemical process in 0.35% NaCl solution”, Surface and Coatings Technology, vol. 425,127698, 2021.

  • [12] R. C. Morón, A. M. Delgado-Brito, I. Campos-Silva, “Scratch resistance of cobalt boride layer subjected to a diffusion annealing process”, Materials Letters, vol. 309, 131352, 2022.

  • [13] I. Gunes, I. Yıldız, “Investigation of Adhesion and Tribological Behavior of Borided AISI 310 Stainless Steel”, Revista Materia, vol. 21, 61-71, 2016.

  • [14] R. Gupta, K. C. Hari Kumar, M. J. N. V. Prasad, et al. “Compositionally graded nano-sized borides in a directionally solidified nickel-base superalloy”, Scripta Materialia, vol. 201, 113981, 2021

  • [15] I. Gunes, A. G. Celik, “Surface Characterization of Borided S220 Rebar”, Journal of Characterization, vol. 1(2), 66-70, 2021.

  • [16] J. Hou, M. Zhang, H. Yang, et al. “Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing”, Materials Letters, vol. 238, 258-260, 2019.

  • [17] I. Turkmen, E. Yalamac, M. Keddam, “Investigation of tribological behaviour and diffusion model ofFe2B layer formed by pack-boriding on SAE 1020 steel”, Surface and Coatings Technology, vol. 377, 124888, 2019.

  • [18] I. Yildiz, A. G. Celik and I. Gunes, “Characterization and Diffusion Kinetics of borided Ni–Mg Alloys”, Protection of Metals and Physical Chemistry of Surfaces, vol. 56(5), 1015–1022, 2020.

                                                                                                                                                                                                        
  • Article Statistics