DIN 100Cr6 çeliğinin korozyon direnci ve elektrik iletkenliğine kriyojenik işlemin etkisi

Author :  

Year-Number: 2022-2
Yayımlanma Tarihi: 2023-05-24 04:20:09.0
Language : İngilizce
Konu : Metal
Number of pages: 167-175
Mendeley EndNote Alıntı Yap

Abstract

Bu çalışmada, DIN 100Cr6 rulman çeliğinin korozyon direnci ve elektrik iletkenliği üzerine derin kriyojenik işlem (DCT) ve geleneksel ısıl işlemin (CHT) etkileri araştırılmıştır. Bu amaçla, derin kriyojenik sıcaklıklarda (-145°C) ve farklı sürelerde (12, 24, 36, 48, 60 saat) çelik numuneler kriyojenik ısıl işleme tabi tutulmuştur. Numunelerin korozif özellikleri % 3.5 NaCl ortamında potansiyodinamik polarizasyon testi uygulanarak belirlenmiştir. Hem martensit, karbür, ostenit tutucu miktarları hem de faz bileşenlerinin morfolojisi, CHT ve DCT ısıl işlem görmüş çeliğin korozyon davranışından etkilenmiştir. Kriyojenik işlem görmüş numunelerde martensit yüzdesinin artması ve kalıntı östenit miktarının azalması ile korozyon direncinin azaldığı gözlemlenmiştir. Martenzit yüzdesi arttıkça numunelerin elektriksel direnci CHT’ye göre artmıştır. Ayrıca karbürlerin homojen dağılımı elektriksel iletkenliği artırmıştır.

Keywords

Abstract

In this study, the effects of deep cryogenic treatment (DCT) and conventional heat treatment (CHT) on the corrosion resistance and electrical conductivity of DIN 100Cr6 bearing steel were investigated. For this purpose, a number of bearing steel samples were held for different times (12, 24, 36, 48, 60 h) at deep cryogenic temperatures (-145°C). The corrosion behavior was investigated with potentiodynamic polarization tests in a 3.5 wt.% NaCl solution. Both the amounts of martensite, carbide, retain austenite and the morphology of the phase constituents were influenced on the corrosion behavior of CHT and DCT heat treated steel. It was observed that the corrosion resistance decreased with the increase of the martensite percentage and the decrease in the amount of residual austenite in the cryogenic treated samples. As the martensite percentage increased, the electrical resistance of the samples increased. In addition, homogeneous distribution of carbides increased electrical conductivity

Keywords


  • [1] A. L. Woodcraft, “Recommended values for the thermal conductivity of aluminum of different purities in the cryogenic to room temperature range, and a comparison with copper,” Cryogenic, vol. 45, pp. 626-636, 2005

  • [2] A. F. Clark, G. E. Childs, and G. H. Wallace, “Electrical resistivity of some engineering alloys at low temperatures,” Cryogenic, vol. 10 no. 4, pp. 295-305, 1970.

  • [3] R. R. Hake, D. H. Leslie, and T. G. “Berlincourt, Electrical resistivity, hall effect and superconductivity of some b.c.c. titanium-molybdenum alloys,”. Journal of Physics and Chemistry of Solids, vol. 20, pp. 177-186, 1961.

  • [4] C. J. Isaak, and W. Reitz, “The effects of cryogenic treatment on the thermal conductivity of GRCop-84. Materials and Manufacturing Processes, vol. 23, pp. 82-91, 2008

  • [5] A. B. Miller, “An austenitic cast steel for low temperature applications,” Cryogenic, vol. 5, no. 6, pp. 320- 324, 1965.

  • [6] F. Pawlek, and D. Rogalla, “The electrical resistivity of silver, copper, aluminum, and zinc as a function of purity in the range 4-298° K,” Cryogenic, vol. 6, no. 1, pp. 14-20, 1966.

  • [7] H. M. Rosenberg, “The properties of metals at low temperatures,” Progress in Metal Physics, vol. 7, pp. 339- 354, 1958.

  • [8] A. F. Clark, G. E. Childs, and G. H. Wallace, “Low-temperature electrical resistivity of some engineering alloys,” Advances in Cryogenic Engineering, vol. 15, pp. 85-90, 1995.

  • [9] W. R. G. Kemp, P. G. Klemens, and G. K. White, “Thermal and electrical conductivities of iron, nickel, titanium, and zirconium at low temperatures,” Australian Journal of Physics, vol. 9(2), pp. 180-188, 1956.

  • [10] W. Zhisheng, S. Ping, L. Jinrui, and H. Shengsun, “Effect of deep cryogenic treatment on electrode life and microstructure for spot welding hot dip galvanized steel,” Materials Design, vol. 24, pp. 687-692, 2003.

  • [11] J. M. Jafferson, and P. Hariharan, “Machining performance of cryogenically treated electrodes in micro- electric discharge machining: A comparative experimental study,” Materials and Manufacturing Processes, vol. 28, pp. 397-402, 2013.

  • [12] I. Gunes, A. Cicek, K. Aslantas, and F. Kara, “Effect of deep cyrogenic treatment on wear resistance of AISI 52100 bearing steel,” Transactions of the Indian Institute of Metals, vol. 67, pp. 909-917, 2014.

  • [13] S. G. Singh, J. Singh, R. Singh, and H. Singh, “Effect of cryogenic treatment on AISI M2 high speed steel: metallurgical and mechanical characterization,” Journal of Materials Engineering and Performance, vol. 21, pp. 1320-1326, 2012

  • [15] Y. Yıldız, M. M. Sundaram, K. P. Rajurkar, and M. Nalbant, “The effects of cold and cryogenic treatments on the machinability of beryllium-copper alloy in electro discharge machining,” In 44th CIRP Conference on Manufacturing Systems, Madison, May 31-June 3, 2011.

  • [16] I. Uygur, H. Gerengi, Y. Arslan, and M. Kurtay, “The effects of cryogenic treatment on the corrosion of AISI D3 steel,” Materials Research, vol. 18, no. 3, pp. 569-574, 2015.

  • [17] S. Zhirafar, A. Rezaeian, and M. Pugh, “Effect of cryogenic treatment on the mechanical properties of 4340 steel,” Journal of Materials Processing Technology, vol. 186, pp. 298-303, 2007.

  • [18] I. Gunes, M. Uzun, A. Cetin, and K. Aslantas, Evaluation of wear performance of cryogenically treated Vanadis 4 Extra tool steel. Kovove Materialy-Metallic Materials, vol. 54, pp.195-204, 2016.

  • [19] A. Barylsk, K. Aniołek, G. Dercz, M. Kupka, and S. Kaptacz, “The effect of deep cryogenic treatment and precipitation hardening on the structure, micromechanical properties and wear of the Mg–Y-Nd-Zr alloy,” Wear, vol. 468-469, pp. 203587, 2021.

  • [20] G. Dhilip, A. Sanjivi, “Investigation of mechanical properties and wear rate on cryogenically treated austempered ductile iron,” Materials Today: Proceedings, vol. 46, no.10. pp. 4691-4695, 2021.

  • [21] M. Koneshlou, K. M. Asl, and F. Khomamizadeha, “Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel,” Cryogenic, vol. 51, pp. 55-61, 2011.

  • [22] J. Voglar, Z. Novak, P. Jovicevic-Klug, B. Podgornik, and T. Kosec, “Effect of deep cryogenic treatment on corrosion properties of various high-speed steels,” Metals, vol.14, 6357, 2021.

  • [23] P. Baldissera, and C. Delprete, “Deep cryogenic treatment of AISI 302 stainless steel: Part II-Fatigue and corrosion,” Materials Design, vol. 31, pp. 4731-4737, 2010.

  • [24] D. Senthilkumar, and I. Rajendran, “Influence of shallow and deep cryogenic treatment on tribological behavior of En 19 steel,” Journal of Iron and Steel Research International, vol. 18, pp. 53-59, 2011.

  • [25] ASTM E975-00, Standard Practice for X-Ray determination of retained austenite in steel with near random crystallographic orientation, ASTM Book of Standards, V 03.01 West Conshohocken, PA, United States, 2004.

  • [26] M. S. Özerdem, “Artificial neural network approach to predict the electrical conductivity and density of Ag- Ni binary alloys,” Journal of Materials Processing Technology, vol. 8, pp. 470-476, 2008.

  • [29] Y. Ocak, S. Aksöz, N. Maraslı, and C. Emin, “Dependency of thermal and electrical conductivity on temperature and composition of Sn in Pb-Sn alloys,” Fluid Phase Equilibria, vol. 295, pp. 60-67, 2010.

  • [30] A. Shakoor, and Z. Zhenggan, “Investigation of 3D anisotropic electrical conductivity in TIG welded 5A06 Al alloy using eddy currents,” Journal of Materials Processing Technology, vol. 211, pp 1736-1741, 2011.

  • [31] F. K. Arslan, I. Altinsoy, A. Hatman, M. Ipek, S. Zeytin, and C. Bindal, “Characterization of cryogenic heat treated Vanadis 4 PM cold work tool steel,” Vacuum, vol. 86, pp. 370-373, 2011.

  • [32] J. Wang, J. Xiong, H. Fan, H. S. Yang, H. H. Liu, and B. L. Shen, “Effects of high temperature and cryogenic treatment on the microstructure and abrasion resistance of a high chromium cast iron,” Journal of Materials Processing Technology, vol. 209, pp. 3236-3240, 2009.

  • [33] S. Li, L. Deng, X. Wu, Y. Min, and H. Wang, “Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel,” Cryogenics, vol. 50, pp. 754-758, 2010.

  • [34] A. Akhbarizadeh, K. Amini, and S. Javadpour, “Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel,” Materials and Design, vol. 41, pp. 114-123, 2012.

  • [35] J. W. Lee, J. G. Duh, and S. Y. Tsai, “Corrosion resistance and microstructural evaluation of chromized coating process in dual phase Fe-Mn-Al-C alloy,” Surface Coating Technology, vol. 153, pp. 59-66, 2002.

  • [36] T. Kamimura, and M. Stratmann, “The influence of chromium on the atmospheric corrosion of steel. Corrosion Science, vol. 43, pp. 429-447, 2001.

  • [37] S. Ramesh, B. Bhuvaneshwari, G. S. Palani, D. Mohan Lal, K. Mondal, and R. K. Gupta, “Enhancing the corrosion resistance performance of structural steel via a novel deep cryogenic treatment process,” Vacuum vol. 159, pp. 468-475, 2019

  • [38] A. Aamir, P. Lei, D. Lixiang, and Z. Zengmin, “Effects of deep cryogenic treatment, cryogenic and annealing temperatures on mechanical properties and corrosion resistance of AA5083 aluminium alloy. International Journal of Microstructure and Materials Properties. 11: 339- 358, 2016.

  • [39] X. Gong, Z. Wu, and F. Zhao, “Effect of deep cryogenic treatment on the microstructure and the corrosion resistance of AZ61 magnesium alloy welded joint,” Metals, vol. 7, no. 5, pp. 179-, 2017.

  • [40] G. H. Kumar, H. Mohit, and R. Purohit, Effect of deep cryogenic treatment on composite material for automotive Ac system, 5th international conference of materials processing and characterization (ICMPC 2016), Mater. Today: Proceedings 4: 3501-3505, 2017.

                                                                                                                                                                                                        
  • Article Statistics