VVER-1200 Reaktörü ve Soğutma Sisteminin Yapısı ve İşleyişi Üzerine Çalışma

Author :  

Year-Number: 2022-3
Yayımlanma Tarihi: 2022-09-30 13:42:55.0
Language : Türkçe
Konu : Fizik
Number of pages: 185-197
Mendeley EndNote Alıntı Yap

Abstract

Son yıllarda ülkelerin hızlı sanayileşmesine ve dünya nüfusunun hızla artmasına paralel olarak artan enerji ihtiyacı her geçen gün daha da büyük bir sorun haline gelmiştir. Ülkeler bu ihtiyaçları karşılamak için farklı enerji kaynakları kullanmaya yönelmişlerdir. Nükleer enerji ve kullanımı birçok araştırmaya konu olmuştur.  Nükleer santral, bir veya daha fazla sayıda nükleer reaktörün yakıt olarak radyoaktif maddeleri kullanarak ısı enerjisi bu enerjiden de elektrik enerjisinin üretildiği tesistir. VVER, ısı transferi ve moderatör olarak suyu kullanan dünyadaki en yaygın tip reaktörlerden biridir. VVER, esas olarak Rusya'da geliştirilen bir çeşit basınçlı su reaktörü (PWR) tasarımıdır. Sonuç olarak, mevcut çalışmanın amacı, VVER-1200 reaktörünü tüm yönleriyle anlatmak ve analiz etmektir

Keywords

Abstract

In recent years, the increasing energy need in parallel with the quick industrialization of countries and rapid growth in world population has become an even bigger problem day by day. Countries have tended to use different energy sources to meet these needs. Nuclear energy and its use have been the subject of many studies. A nuclear power plant is a facility where one or more nuclear reactors use radioactive materials as fuel, and heat energy and electrical energy are produced from this energy. VVER is one of the most widespread type of reactors in the world using water as heat-transfer and modurator. The VVER is a types of pressurized water reactor (PWR) designs that were essentially developed in Russia. In conclusion, the aim of the present study is to describe and analyze the VVER-1200 reactor in all its aspects.

Keywords


  • [1] Edwards, M. W., Schweitzer, R. D., Shakespeare-Finch, J., Byrne, A., & Gordon-King, K., “Living with nuclear energy: A systematic review of the psychological consequences of nuclear power.” Energy Research & Social Science, 47, 1-15, 2019.

  • [2] Alwaeli, M., & Mannheim, V., “Investigation into the current state of nuclear energy and nuclear waste management—A state-of-the-art review.” Energies, 15(12), 4275, 2022.

  • [3] Zhang, Q., Huang, Y., Sand, W., & Wang, X. (2019)., “Effects of deep geological environments for nuclear waste disposal on the hydrogen entry into titanium.” International Journal of Hydrogen Energy, 44(23), 12200-12214, 2019.

  • [4] Lukens, W. W., & Saslow, S. A., “Aqueous synthesis of technetium-doped titanium dioxide by direct oxidation of titanium powder, a precursor for ceramic nuclear waste forms.” Chemistry of Materials, 29(24), 1036910376, 2017.

  • [5] Choppin, G., Liljenzin, J. O., & Rydberg, J. (2002). Radiochemistry and nuclear chemistry. Butterworth- Heinemann.

  • [7] Mathew, M. D. “Nuclear energy: A pathway towards mitigation of global warming.” Progress in Nuclear Energy, 143, 104080, 2022.

  • [8] IAEA Country Nuclear Power Profiles 2019 Edition Erişim: 02.09.2022. https://www- pub.iaea.org/MTCD/publications/PDF/cnpp2019/countryprofiles/Turkey/Turkey.htm

  • [9] What Is Nuclear Energy, 2021 IAEA Report What Is Nuclear Energy? the Science of Nuclear Power (2021) Erişim: 02.09.2022. https://www.iaea.org/newscenter/news/what-is-nuclear-energy-the-science-of-nuclearpower

  • [10] Martinez, J. “Remarks on Nuclear Fusion Energy: Advantages, and Disadvantages.” Available at SSRN 4109155, 2022.

  • [11] Rachkov, V. I., Kalyakin, S. G., Kukharchuk, O. F., Orlov, Y. I., & Sorokin, A. P. “From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World’s First nuclear power plant].” Thermal Engineering, 61(5), 327-336, 2014.

  • [12] IAEA Nuclear Power Reactors In The World 2022 Edition Erişim: 03.09.2022. https://www.iaea.org/publications/15211/nuclear-power-reactors-in-the-world

  • [13] Gu, Z., “History review of nuclear reactor safety.” Annals of Nuclear Energy, 120, 682-690, 2018.

  • [14] Locatelli, G., Mancini, M., & Todeschini, N. “Generation IV nuclear reactors: Current status and future prospects.” Energy Policy, 61, 1503-1520, 2013.

  • [15] Goldberg, S., & Rosner, R. (2011, March). “Nuclear reactors: Generation to generation.” Cambridge: American academy of arts and sciences.

  • 103-124, 2016.

  • [17] Comsan, M. N. Status of nuclear power reactor development, 2018.

  • [18] Khttab, K. “Nuclear power reactors in the world.” Atom and Development, 33(2), 43-55, 2021.

  • [19] Chaplin, R. “Introduction to nuclear reactors.” The Essential CANDU-A textbook on the CANDU Nuclear Power Plant Technology, 1, 2015.

  • [20] Suri, A.K. “Material development for India’s nuclear power programme.” Sadhana 38, 859–895, 2013.

  • [21] Oğuz, K. F. (2019). Nükleer enerjinin geçmişi ve geleceği. Erişim: 03.09.2022. http://acikerisim.maltepe.edu.tr/xmlui/bitstream/handle/20.500.12415/9806/ADHOC_Eylul_2019_Kemal_ Firat_Oguz.pdf?sequence=1

  • [22] Ho, M., Obbard, E., Burr, P. A., & Yeoh, G. “A review on the development of nuclear power reactors.” Energy Procedia, 160, 459-466, 2019.

  • [23] Fernández-Arias, P., Vergara, D., & Orosa, J. A. “A global review of PWR nuclear power plants.” Applied Sciences, 10(13), 4434, 2020.

  • [25] Cadwallader, L. C., & Petti, D. A. (1999, October). A review of availability growth in energy production technologies. In 18th IEEE/NPSS Symposium on Fusion Engineering. Symposium Proceedings (Cat. No. 99CH37050) (pp. 585-588). IEEE.

  • [26] Adem, A., “Candu Reaktörlerinde Thc Ve Lwr Yakıt Atığı Karışımı Kullanımının İncelenmesi.” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 20(1), 2005.

  • [27] Taner, C. A. “Yeni Nesil Güç Reaktörleri.” Fizik Mühendisleri Odası Yayınları. Faydalı Bilgiler, 2006.

  • [28] Dent, K. H. “Gas-cooled reactors.” In Nuclear power technology, 1983.

  • [30] Fang, C., Morris, R., & Li, F. “Safety features of high temperature gas cooled reactor.” Science and Technology of Nuclear Installations, 2017.

  • [31] Toffer, H. “Evolution of the Hanford graphite reactor technology (No. WHC-SA-0440; CONF-8904201-2).” Westinghouse Hanford Co., Richland, WA (USA), 1989.

  • [32] Smith, R. R., & Cissel, D. W. “Past and present role of fast breeder reactors in the United States of America.” In Design, construction and operating experience of demonstration LMFBRs, 1978.

  • [33] Cochran, T. B., Feiveson, H. A., & Von Hippel, F. “Fast reactor development in the United States.” Science and Global Security, 17(2-3), 109-131, 2009.

  • [34] Vaidya, P. R. Fast Breeder Reactors: Energy Insurance for Tomorrow, 2016.

  • [35] Hargraves, R., & Moir, R. “Liquid Fluoride Thorium Reactors: An old idea in nuclear power gets reexamined.” American Scientist, 98(4), 304-313, 2010.

  • [36] Lambert, T., & Nghiem, X. H. “Review of the Deployment of and Research into Generation III & IV Nuclear Fission Reactors for Power Generation.” PAM Review Energy Science & Technology, 1, 90-108, 2014.

  • [37] Marques, J. G. “Evolution of nuclear fission reactors: Third generation and beyond.” Energy Conversion and Management, 51(9), 1774-1780, 2010.

  • [38] Saha, D., & Sinha, R. K. “Indian advanced nuclear reactors.” In Sixteenth annual conference of Indian Nuclear Society: science behind nuclear technology, 2005.

  • [39] China General Nuclear Power Group. Erişim: 04.09.2022 http://en.cgnp.com.cn/

  • [40] Poullikkas, A. “An overview of future sustainable nuclear power reactors.” International Journal of Energy & Environment, 4(5), 2013.

  • [41] Ion, S., Nicholls, D., Matzie, R., & Matzner, D. “Pebble bed modular reactor the first generation IV reactor to be constructed.” Nuclear Energy, 43(1), 55-62, 2004.

  • [42] Nguyen, T., Wang, X., & Bromley, B. “Review of Methods and Results for Reactor Physics Analysis of Thorium-Based Fuels From Irradiation Experiments Conducted in NRU.” Journal of Nuclear Engineering and Radiation Science, 2022.

  • [43] Wang, P. F., Liu, Y., Jiang, B. T., Wan, J. S., & Zhao, F. Y. “Nodal dynamics modeling of AP1000 reactor for control system design and simulation.” Annals of Nuclear Energy, 62, 208-223, 2013.

  • [45] Wang, P., Fu, Y., Wei, X., & Zhao, F. “Simulation study of frequency control characteristics of a generation III+ nuclear power plant.” Annals of Nuclear Energy, 115, 502-522, 2018.

  • [46] Kawano, Y., Takiwaki, K., Takado, N., Yamazaki, Y., & Arai, K. “Simulation of operational transients for AP1000 TM plant primary and BOP systems.” 2017.

  • [47] Torgerson, D. F., Shalaby, B. A., & Pang, S. “CANDU technology for Generation III+ and IV reactors.” Nuclear Engineering and Design, 236(14-16), 1565-1572, 2006.

  • [48] Nuzzo, F., Keil, H., Shalaby, B., Pang, S., Yu, S., & Hopwood, J. “Advanced CANDU reactor, evolution and innovation.”, 2005

  • [50] Schulenberg, T., Leung, L. K., & Oka, Y. “Review of R&D for supercritical water cooled reactors.” Progress in Nuclear Energy, 77, 282-299, 2014.

  • [51] Bushby, S.J., Dimmick, G.R., Duffey, R.B., Burrill, K.A., Chan, P.S.W., “Conceptual Designs for Advanced, High-Temperature CANDU Reactors”, Proc. 8th International Conference on Nuclear Engineering, ICONE8470, Baltimore, MD, USA, 2020.

  • [52] B.A. Shalaby, R.B. Duffey, et al. Strategic directions for CANDU product development 24th CNS Annual Conference, Toronto, Canada (9 June 2003)

  • [53] Duffey, R.B., Shalaby, B.A., Torgerson, D.F., Khartabil, H.F., Hopwood, J.M., 21–25 March 2004 “CANDU and Generation IV System”, 14th Pacific Basin Nuclear Conference on ‘New Technologies for a New Era’, Honolulu, Hawaii.

  • [54] Murty, K. L., & Charit, I. “Structural materials for Gen-IV nuclear reactors: Challenges and opportunities.” Journal of Nuclear Materials, 383(1-2), 189-195, 2008.

  • [55] Serp, J., Allibert, M., Beneš, O., Delpech, S., Feynberg, O., Ghetta, V., ... & Zhimin, D. “The molten salt reactor (MSR) in generation IV: overview and perspectives.” Progress in Nuclear Energy, 77, 308-319, 2014.

  • [56] Herranz, L. E., Linares, J. I., & Moratilla, B. Y. “Power cycle assessment of nuclear high temperature gas- cooled reactors.” Applied Thermal Engineering, 29(8-9), 1759-1765, 2009.

  • [57] Driscoll, M. J., & Hejzlar, P. “Reactor physics challenges in Gen-IV reactor design.” Nuclear Engineering and Technology, 37(1), 1-10, 2005.

  • [58] Aoto, K., Dufour, P., Hongyi, Y., Glatz, J. P., Kim, Y. I., Ashurko, Y., ... & Uto, N. “A summary of sodium- cooled fast reactor development.” Progress in Nuclear Energy, 77, 247-265, 2014.

  • [59] Chung, W. S., Yun, S. W., Lee, D. S., & Go, D. Y. “Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement” 2012.

  • [60] Yoo, J., Chang, J., Lim, J. Y., Cheon, J. S., Lee, T. H., Kim, S. K., ... & Joo, H. K. “Overall system description and safety characteristics of prototype Gen IV sodium cooled fast reactor in Korea.” Nuclear Engineering and Technology, 48(5), 1059-1070, 2016.

  • [61] Smith, C. F., & Cinotti, L. “Lead-cooled fast reactor.” In Handbook of Generation IV Nuclear Reactors (pp. 119-155). Woodhead Publishing, 2016.

  • [64] Furuncu, Y. “Türkiye’nin enerji bağımlılığı ve Akkuyu nükleer enerji santrali.” Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 37, 198-207, 2016.

  • [65] Akyüz, E. “Advantages and disadvantages of nuclear energy in Turkey: Public perception.” Eurasian Journal of Environmental Research, 1(1), 1-11, 2017.

  • [66] Katona, T. J. “Long-term operation of VVER power plants.” Nuclear Power-Deployment, Operation and Sustainability, 152-196, 2011.

  • [67] Asmolov, V. G., Gusev, I. N., Kazanskiy, V. R., Povarov, V. P., & Statsura, D. B. “New generation first-of- the kind unit–VVER-1200 design features.” Nuclear Energy and Technology, 3(4), 260-269, 2017.

  • [68] Prytkov, A.N., Tereshchenko, A.B., Golubev, E.I., Boev, I.A., “Specific features of initial fuel load of the innovative power unit under AES-2006 project.” Nucl. Energy Technol. 3 (4), 307–312, 2017.

  • [69] Fil, N. S. (2012, April). “VVER-1200 Reactor Plant and Safety Systems.” In Rosatom Seminar on Russian Nuclear Energy Technologies and Solutions, Johannesburg.

  • [70] Hafez, N., Shahbunder, H., Amin, E., Elfiki, S. A., & Abdel-Latif, A. “Study on criticality and reactivity coefficients of VVER-1200 reactor.” Progress in Nuclear Energy, 131, 103594., 2021.

  • [71] Le Dai Dien, D. N. D. “Verification of VVER-1200 NPP simulator in normal operation and reactor coolant pump coast-down transient.” World Journal of Engineering and Technology, 5, 507-519., 2017.

  • [72] IAEA, 2003. WWER-1000 Reactor Simulator. In: Training Course Series, Number 21, International Atomic Energy Agency, Vienna, Erişim: 06.09.2022 https://www.iaea.org/publications/6686/wwer-1000-reactorsimulator

  • [73] Faghihi, F., Mirvakili, S. M., Safaei, S., & Bagheri, S. “Neutronics and sub-channel thermal-hydraulics analysis of the Iranian VVER-1000 fuel bundle.” Progress in Nuclear Energy, 87, 39-46, 2016.

  • [74] Uzun, S., Genç, Y., & Acır, A. “UGD ve MOX Yakıtı Kullanılarak VVER-1000 Nükleer Reaktöründe Nötronik Ve Termal Performansın İncelenmesi.” Politeknik Dergisi., 2020.

  • [75] Bilen, O., “VVER-1200 Reaktöründe Soğutucu Kaybı Kazası ve Belirsizlik Analizi.” Hacettepe Üniversitesi, Yüksek Lisans Tezi, 2020.

  • [76] Fyza, N., Hossain, A., & Sarkar, R. “Analysis of the thermal-hydraulic parameters of VVER-1200 due to loss of coolant accident concurrent with loss of offsite power.” Energy Procedia, 160, 155-161, 2019.

                                                                                                                                                                                                        
  • Article Statistics