Otomotiv Sektöründe Kullanılan MWCNT Katkılı Poliüretan Nanokompozitlerin Eğilme Hasarının İncelenmesi

Author :  

Year-Number: 2022-3
Yayımlanma Tarihi: 2022-12-06 14:03:58.0
Language : İngilizce
Konu : Kompozit
Number of pages: 198-205
Mendeley EndNote Alıntı Yap

Abstract

Metal, seramik, polimer vb. geleneksel malzemelerin farklı uygulamalarda, insanoğlunun başlangıcından bugüne kadar yaygın olarak kullanılmaktadır. Günümüzde ise kompozit malzemeler, birkaç farklı bileşen malzemenin avantajlarını birleştirerek malzeme performansının optimizasyonunda büyük bir potansiyel sunan ve en hızlı büyüyen malzeme sınıfları arasındadır. Poliüretan kompozitler (PUC'ler) düşük yoğunluk, mükemmel esneklik, şekil hafızası, yüksek aşınma direnci, korozyon direnci, kopmada yüksek uzama, sönümleme yeteneği, hava koşullarına dayanıklılık, yüksek elastikiyet, yaşlanma önleyici, iyi işlenebilirlik, yüksek darbe dayanımı, mükemmel parlaklık gibi takdire şayan özelliklere sahiptir. Nanoparçacıklar ile güçlendirilmiş polimer nanokompozitler hem akademik hem de endüstriyel alanlarda malzeme biliminde dikkate değer bir dönüm noktası haline gelmiştir. Yapılan bu çalışmada poliüretan reçinenin içerisine çözelti hazırlama metoduyla ağırlıkça % 0.25, 0.35 ve 0.45 oranlarında çok cidarlı karbon nanotüpler (MWCNTs) dolgu yapılarak polimer nanokompozit malzemelerin üretimi gerçekleştirilmiştir. Üretilen farklı oranlarındaki MWCNTs dolgulu PU nanokompozitlerin üç noktadan eğilme testleri, eğilme dayanımları, Young modülleri, toklukları, birim şekil değişimleri saf PU ile karşılaştırılmıştır. MWCNT takviyeli poliüretan nanokompozit malzemelerden üretilen üç noktadan eğme test parçaları ASTM D790-02 standardına göre üretilmiştir. Saf poliüretanın eğilme dayanımı 25 MPa iken %0.35 MWCNT dolgulu poliüretan nanokompozit malzemenin eğilme dayanımı % 46.8 oranında bir artış ile 36.7 MPa elde edilmiştir.  Saf poliüretan reçineye göre MWCNT dolgulu PU nanokompozitlerin rijitliklerinin arttığı gözlemlenmiştir. Ayrıca kırık yüzeylerin hasar davranışları taramalı elektron mikroskobu (SEM) ile incelenmiştir.

Keywords

Abstract

Traditional materials such as metal, ceramic, polymer, etc. have been widely used in different applications since the beginning of mankind. Today, composite materials are among the fastest growing material classes, offering great potential in optimizing material performance by combining the advantages of several different component materials. Polyurethane composites (PUCs) have admirable features such as low density, excellent flexibility, shape memory, high wear resistance, corrosion resistance, high elongation at break, damping ability, resistance to weather conditions, high elasticity, anti-aging, good machinability, high impact resistance, excellent brightness. Polymer nanocomposites reinforced with nanoparticles have become a remarkable milestone in materials science, both in academic and industrial fields. In this study, polymer nanocomposite materials were produced by filling multi-walled carbon nanotubes (MWCNTs) in the polyurethane resin with the solution preparation method at the ratios of 0.25, 0.35 and 0.45 by weight. Three-point bending tests, bending strength, Young's modulus, toughness, rupture strains of PU nanocomposites filled with different addinng ratios of MWCNTs were compared with pure PU. MWCNT doped polyurethane nanocomposite materials were produced and then three point bending specimens of these materials according to ASTM D790-02 standard were prepared. While the flexural strength of pure polyurethane was 25 MPa, the flexural strength of 0.35% MWCNT filled polyurethane nanocomposite material was 36.7 MPa with an increase of 46.8%. It was observed that the stiffness of MWCNT filled PU nanocomposites increased compared to pure polyurethane resin. In addition, the damage behavior of the fractured surfaces was examined by scanning electron microscopy (SEM).

Keywords


  • [1] M. Ekrem, "Shear strength of boron nitride nanoplatelets and nano Ag reinforced structural adhesives," Journal of Bor, vol. 4, no. 3, pp. 128-134, 2019.

  • [2] K. M. Zia, H. N. Bhatti, and I. A. Bhatti, "Methods for polyurethane and polyurethane composites, recycling and recovery: A review," (in English), Reactive & Functional Polymers, vol. 67, no. 8, pp. 675-692, Aug 2007.

  • [3] W. U. Rehman, A. A. Hassan, J. Ahmed, T. Rasheed, S. U.-D. Khan, and A. M. Al-Mohaimeed, "Thermoplastic polyurethane conjugated antimony doped tin oxide nanocomposite for enhanced electrical and thermal conductivity," Synthetic Metals, vol. 269, p. 116570, 2020.

  • [4] E. De Meo, S. Agnelli, A. Veca, V. Brunella, and M. Zanetti, "Piezoresistive and mechanical Behavior of CNT based polyurethane foam," Journal of Composites Science, vol. 4, no. 3, p. 131, 2020.

  • [5] A. M. F. Lima, V. G. de Castro, R. S. Borges, and G. G. Silva, "Electrical Conductivity and Thermal Properties of Functionalized Carbon Nanotubes/Polyurethane Composites," (in English), Polimeros-Ciencia E Tecnologia, vol. 22, no. 2, pp. 117-124, Apr-Jun 2012.

  • [6] Y. Kanbur and U. Tayfun, "Development of multifunctional polyurethane elastomer composites containing fullerene: Mechanical, damping, thermal, and flammability behaviors," (in English), Journal of Elastomers and Plastics, vol. 51, no. 3, pp. 262-279, Apr 2019.

  • [7] J. Xiong, Z. Zheng, W. Song, D. Zhou, and X. Wang, "Microstructure and properties of polyurethane nanocomposites reinforced with methylene-bis-ortho-chloroanilline-grafted multi-walled carbon nanotubes," Composites Part A: Applied Science and Manufacturing, vol. 39, no. 5, pp. 904-910, 2008.

  • [8] S. K. Parida, "Recent Advances on Polymer-Based Nanocomposite: A Brief Review," Micro and Nanosystems, vol. 14, no. 2, pp. 121-132, 2022.

  • [9] H. Ulus et al., "An experimental evaluation on the dynamic response of water aged composite/aluminium adhesive joints: Influence of electrospun nanofibers interleaving," (in English), Composite Structures, vol. 280, Jan 15 2022.

  • [10] P. Szatkowski, K. Pielichowska, and S. Blazewicz, "Mechanical and thermal properties of carbon-nanotube- reinforced self-healing polyurethanes," Journal of Materials Science, vol. 52, no. 20, pp. 12221-12234, 2017.

  • [11] P. Gahlout and V. Choudhary, "EMI shielding response of polypyrrole-MWCNT/polyurethane composites," Synthetic Metals, vol. 266, p. 116414, 2020.

  • [12] M. Wong, M. Paramsothy, X. J. Xu, Y. Ren, S. Li, and K. Liao, "Physical interactions at carbon nanotube- polymer interface," (in English), Polymer, vol. 44, no. 25, pp. 7757-7764, Dec 2003.

  • [13] X. G. Luo, Z. C. Yu, Y. X. Cai, Q. X. Wu, and J. Zeng, "Facile Fabrication of Environmentally-Friendly Hydroxyl-Functionalized Multiwalled Carbon Nanotubes/Soy Oil-Based Polyurethane Nanocomposite Bioplastics with Enhanced Mechanical, Thermal, and Electrical Conductivity Properties," (in English), Polymers, vol. 11, no. 5, May 2019.

  • [14] F. Yıldırım, N. Ataberk, and M. Ekrem, "Mechanical and thermal properties of a nanocomposite material which epoxy based and reinforced with polyvinyl alcohol nano fibers contained multiwalled carbon nanotube," Journal of Composite Materials, 2020.

  • [15] M. H. Moghim and S. M. Zebarjad, "Tensile properties and deformation mechanisms of PU/MWCNTs nanocomposites," (in English), Polymer Bulletin, vol. 74, no. 10, pp. 4267-4277, Oct 2017.

  • [16] M. A. Senyurt, M. Ekrem, H. Duzcukoglu, and A. Avci, "Effect of composite to aluminum single lap joints reinforced with graphene doped nylon 6.6 nanofibers," (in English), Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, vol. 235, no. 5, pp. 12691278, Oct 2021.

  • [17] M. Quaresimin, K. Schulte, M. Zappalorto, and S. Chandrasekaran, "Toughening mechanisms in polymer nanocomposites: From experiments to modelling," Composites Science and Technology, vol. 123, pp. 187-204, 2016.

  • [18] M. Ekrem and A. Avcı, "Effects of polyvinyl alcohol nanofiber mats on the adhesion strength and fracture toughness of epoxy adhesive joints," Composites Part B: Engineering, vol. 138, pp. 256-264, 2018.

  • [20] C. V. Opelt, D. Becker, C. M. Lepienski, and L. A. F. Coelho, "Reinforcement and toughening mechanisms in polymer nanocomposites - Carbon nanotubes and aluminum oxide," (in English), Composites Part BEngineering, vol. 75, pp. 119-126, Jun 15 2015.

  • [21] M. T. Demirci, N. Tarakçıoğlu, A. Avcı, A. Akdemir, and I. Demirci, "Fracture toughness (Mode I) characterization of SiO2 nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method," Composites Part B: Engineering, vol. 119, pp. 114-124, 2017.

                                                                                                                                                                                                        
  • Article Statistics