Demir Cevheri Sinter RUL Test Sonuçlarının Analizi

Author :  

Year-Number: 2022-3
Yayımlanma Tarihi: 2022-12-26 22:59:47.0
Language : İngilizce
Konu : Malzeme Bilimi ve Mühendisliği
Number of pages: 251-260
Mendeley EndNote Alıntı Yap

Abstract

Sinterleme işlemi, toz halindeki demir cevherlerinin yüksek fırın için istenilen partikül boyutuna, mukavemetine ve gaz geçirgenliğine getirilmesidir. Sinterleme sırasında partiküller arasında bağlanma, boyut değişimi ve mikro yapının topaklaşması gibi önemli olaylar meydana gelir. Sinter numunesinin metalurjik özelliklerini belirlemek için RUL (Yük Altında İndirgeme) testi yapılır. Sinter üretiminin fiziksel, kimyasal ve indirgenebilirlik özelliklerini artırmak için verilerin belirli periyotlarla ölçüldüğü demir-çelik tesislerinde istatistiksel proses kontrol teknikleri kullanılmaktadır. Böylece kontrol ve uygulanabilirlik açısından bazı önemli avantajlar sağlanmaktadır. Bu çalışmada, sinter malzemesinden düzenli olarak alınan numunelerin yük altında statik ve dinamik test, düşük sıcaklıkta redüksiyon parçalanma ve redüksiyon prosesinin kabiliyetini belirleme çalışmaları yapılmıştır. Her bir parametre için hareketli aralık yöntemi kullanılarak X-R kontrol çizelgeleri çizilmiştir. Böylece alt ve üst limit değerlerin sapmaları belirlenmiştir. Sinter Harmanı içerisinde ham cevher miktarının ve tenörünün uygun miktarlarda kullanılarak sabitlenmesi gerektiği sonucuna varılmıştır.

Keywords

Abstract

The sintering process brings the powdered iron ores to the desired particle size, strength and gas permeability for the blast furnace. During sintering, important events such as bonding between particles, size change and coarsening of the microstructure take place. RUL (Reduction Under Load) test is performed to determine the metallurgical properties of the sintered sample. Statistical process control techniques are used for iron and steel plants in which data are measured for certain periods to increase physical, chemical and reducibility properties of sinter production. Thus, when some important advantages are provided in terms of control and applicability. In this study, static and dynamic test low-temperature reduction disintegration and reduction under the load of the samples taken out regularly from sinter samples were investigated to determine the capability of the process. For each parameter, X-R control charts using the moving range method were drawn. Thereby, deviations of lower and upper limit values were determined. It was concluded that the amount and grade of raw ore in the Sinter Blend should be fixed by using appropriate amounts.

Keywords


  • [1] Cheng, Z., Tan, Z., Guo, Z., Yang, J., and Wang, Q. (2020). “Recent progress in sustainable and energy- efficient technologies for sinter production in the iron and steel industry”. Renewable and Sustainable Energy Reviews, 131, 110034.

  • [2] Fernández-González, D., Ruiz-Bustinza, I., Mochón, J., González-Gasca, C., and Verdeja, L. F. (2017). “Iron ore sintering: Process”. Mineral Processing and Extractive Metallurgy Review, 38(4), 215-227.

  • [3] Boyrazlı, M. 2008. “Investigation of the Ways to Eliminate the Negative Effects of Impurities in Iron Ore” Ph.D. Thesis, Yıldız Technical University, Institute of Science and Technology, Istanbul (in Turkish).

  • [5] Çavdar, U. 2009. “Determination of Parameters in Induction Sintering of Iron-Based Powder Metal Parts” Ph.D. Thesis, Celal Bayar University, Institute of Science and Technology, Manisa (in Turkish).

  • [6] Ahmed, H. (2018). “New trends in the application of carbon-bearing materials in blast furnace iron-making”. Minerals, 8(12), 561.

  • [7] König, U., Norberg, N., and Gobbo, L. (2017). “From Iron Ore to Iron Sinter—Process Control Using X-Ray Diffraction (XRD)”. Anais dos Seminários de Redução, Minério de Ferro e Aglomeração; Editora Blucher: São Paulo, Brazil, 146-153.

  • [8] Du, S., Wu, M., Chen, L., Cao, W., and Pedrycz, W. (2020). “An intelligent decision-making strategy based on the forecast of abnormal operating mode for iron ore sintering process”. Journal of Process Control, 96, 57-66.

  • [9] Fernández-González, D., Gómez-Rodríguez, C., and Verdeja, L. F. (2022). “Multivariate statistics applied to the iron ore sintering process”.

  • [10] Wang, C. S., and Wu, M. (2011). “Hierarchical intelligent control system and its application to the sintering process”. IEEE Transactions on Industrial Informatics, 9(1), 190-197.

  • [11] Wu, M., Chen, X., Cao, W., She, J., and Wang, C. (2014). “An intelligent integrated optimization system for the proportioning of iron ore in a sintering process”. Journal of Process Control, 24(1), 182-202.

  • [12] Kumar, V., Sairam, S. D. S. S., Kumar, S., Singh, A., Nayak, D., Sah, R., and Mahapatra, P. C. (2017). “Prediction of iron ore sinter properties using statistical technique”. Transactions of the Indian Institute of Metals, 70(6), 1661-1670.

  • [13] Chen, X., Shi, X., and Tong, C. (2019). “Multi-time-scale TFe prediction for iron ore sintering process with complex time delay”. Control Engineering Practice, 89, 84-93.

  • [14] Clout, J. M. F., and Manuel, J. R. (2015). “Mineralogical, chemical, and physical characteristics of iron ore”. In Iron Ore (pp. 45-84). Woodhead Publishing.

  • [15] Fernández-González, D., Ruiz-Bustinza, I., Mochón, J., González-Gasca, C., and Verdeja, L. F. (2017). “Iron

  • [16] Lu, L., Ishiyama, O., Higuchi, T., Matsumura, M., and Higuchi, K. (2022). “Iron ore sintering”. In Iron Ore (pp. 489-538). Woodhead Publishing.

  • [17] Sintering, “Sinter Plant”, [Online]. Available: https://www.eurotherm.com/sv/heat-treatment-articles- sv/sintering/ [Accessed Oct. 15, 2022]

  • [18] Bai, D. S., and Choi, I. S. (1995). “X¯ and R control charts for skewed populations”. Journal of Quality Technology, 27(2), 120-131.

  • [20] Khademi, M., and Amirzadeh, V. (2014). “Fuzzy rules for fuzzy overline X and R control charts”. Iranian Journal of Fuzzy Systems, 11(5), 55-66.

  • [21] Haridy, S., Maged, A., Kaytbay, S., and Araby, S. (2017). “Effect of sample size on the performance of Shewhart control charts”. The International Journal of Advanced Manufacturing Technology, 90(1), 11771185.

  • [22] Dutta, S., Das, P., Das, A., and Mukhopadhyay, S. (2014). “Significant improvement of refractoriness of Al2O3–C castables containing calcium aluminate nano-coatings on graphite”. Ceramics International, 40(3), 4407-4414.

  • [23] Sternel, J., and Lahiri, A. K. (1999). “Contraction and meltdown behavior of olivine iron ore pellets under simulated blast furnace conditions”. Ironmaking and steelmaking, 26(5), 339-348.

  • [24] Iljana, M., Kemppainen, A., Paananen, T., Mattila, O., Pisilä, E., Kondrakov, M., and Fabritius, T. (2015). “Effect of adding limestone on the metallurgical properties of iron ore pellets”. International journal of mineral processing, 141, 34-43.

  • [25] Sterneland, J., Andersson, M. A., and Jönsson, P. G. (2003). “Comparison of iron ore reduction in experimental blast furnace and laboratory scale simulation of blast furnace process”. Ironmaking and steelmaking, 30(4), 313-327.

  • [26] Geerdes, M., Chaigneau, R., and Lingiardi, O. (2020). “Modern Blast Furnace Ironmaking: An Introduction” (2020). Ios Press.

  • [27] Saniga, E. M. (1991). “Joint statistical design of X and R control charts”. Journal of Quality Technology, 23(2), 156-162.

  • [28] Bakir, M. A., and Altunkaynak, B. (2004). “The optimization with the genetic algorithm approach of the multi-objective, joint economical design of the X¯ and R control charts”. Journal of Applied Statistics, 31(7),

  • [29] Montgomery, D. C. (1997). “Introduction to statistical quality control”, (3th ed). Inc., Canada, 179-186.

  • [30] Nedumaran, G., and Pignatiello Jr, J. J. (2001). “On estimating X control chart limits”. Journal of Quality Technology, 33(2), 206-212.

  • [31] Smith, A. E. (1994). “X-bar and R control chart interpretation using neural computing”. The International Journal of Production Research, 32(2), 309-320.

                                                                                                                                                                                                        
  • Article Statistics