A novel method to prepare of silane based superhydrophobic thin film

Author :  

Year-Number: 2021-Özel Sayı
Yayımlanma Tarihi: 2021-12-30 20:08:13.0
Language : İngilizce
Konu : Polimer
Number of pages: 8-18
Mendeley EndNote Alıntı Yap

Abstract

Bu çalışmada ilk olarak organik-inorganik bir hibrit malzeme sol-jel yöntemi ile hazırlanmıştır. Öncü olarak 3-aminopropyltriethoxysilan (3-APTES) ve tridecafluorooctyltriethoxysilan (Evonik F 8261) kullanıldı. Silan birleştirme ajanları su, dekan ve hidroklorik asit karışımı içerisinde 2 saat çözündürüldü. Soda-kireç cam substratları, bir film aplikatörü yardımı ile silan bazlı kaplama çözeltisi ile kaplandı. Kaplanan filmler, alkol, organik çözücü ve fazla suyun filmlerden buharlaşmasına izin vermek için bir fırında 80°C'de kurutuldu. Çözücülerin buharlaştırılmasından sonra numuneler, temas açısı, FT-IR, SEM, gonyometre, ışık geçirgenliği, haze ve parlaklık ölçer cihazı ile karakterize edildi. Süperhidrofobik yüzey, 3-APTES / tridecafluorooctyltriethoxysilane hibrid bileşiğinden başarıyla elde edildi

Keywords

Abstract

In this study, an organic-inorganic hybrid material was first prepared by the sol-gel method. 3-aminopropyltriethoxysilane (3-APTES) and tridecafluorooctyltriethoxysilane (Evonik F 8261) were used as precursors. The silane coupling agents were dissolved in a mixture of water, decane and hydrochloric acid for 2 hours. Soda-lime glass substrates were coated with the silane-based coating solution with the aid of a film applicator. The coated films were dried in an oven at 80°C to allow alcohol, organic solvent and excess water to evaporate from the films. After evaporation of the solvents, the samples were characterized by contact angle, FT-IR, SEM, goniometer, light transmittance, haze and gloss meter. Superhydrophobic surface was successfully obtained from 3 APTES/tridecafluorooctyltriethoxysilane hybrid compounds.

Keywords


  • [1] SÖNMEZOĞLU, S., Mehmed, K. O. Ç., & SeçkHn, A. K. I. N. (2012). İnce fHlm üretHm teknHklerH. ErcHyes ÜnHversHtesH Fen BHlHmlerH EnstHtüsü Fen BHlHmlerH DergHsH, 28(5), 389-404.

  • [2] Gessert, THmothy. (2012). Chapter 1.19: CadmHum TellurHde PhotovoltaHc ThHn FHlm: CdTe. Earth and Planetary ScHences. 1. 10.1016/B978-0-08-087872-0.00122-0.

  • [3] Zhang, B., LH, B., Gao, S., LH, Y., Cao, R., Cheng, J., ... & LHu, B. (2020). Y-doped THO2 coatHng wHth superHor bHoactHvHty and antHbacterHal property prepared vHa plasma electrolytHc oxHdatHon. MaterHals & DesHgn, 192, 108758.

  • [4] VetrHvezhan, P., Ayyanar, C., Arunraj, P. V., Vasanthkumar, P., & Ganesan, D. (2021). Electroless deposHtHon of alumHnHum alloy LM25 by SHC and NH-P nano coatHng. MaterHals Today: ProceedHngs.

  • [5] Weber, S. B., LeHn, H. L., Grande, T., & EHnarsrud, M. A. (2013). Influence of the precursor solutHon chemHstry on the deposHtHon of thHck coatHngs by spray pyrolysHs. Surface and CoatHngs Technology, 221, 53-58.

  • [6] Günen, A., Kanca, Y., Karahan, İ. H., Karakaş, M. S., Gök, M. S., Kanca, E., & Çürük, A. (2018). A comparatHve study on the effects of dHfferent thermochemHcal coatHng technHques on corrosHon resHstance of STKM-13A steel. MetallurgHcal and MaterHals TransactHons A, 49(11), 5833-5847.

  • [7] MostaghHmH, J., Chandra, S., GhafourH-Azar, R., & DolatabadH, A. (2003). ModelHng thermal spray coatHng processes: a powerful tool Hn desHgn and optHmHzatHon. Surface and CoatHngs Technology, 163, 1-11.

  • [8] MartHn, P. M. (2009). Handbook of deposHtHon technologHes for fHlms and coatHngs: scHence, applHcatHons and technology. WHllHam Andrew.

  • [9] LHu, M. J., Zhang, K. J., Zhang, Q., Zhang, M., Yang, G. J., LH, C. X., & LH, C. J. (2019). ThermodynamHc condHtHons for cluster formatHon Hn supersaturated boundary layer durHng plasma spray-physHcal vapor deposHtHon. ApplHed Surface ScHence, 471, 950-959.

  • [10] Akpan, UG ve Hameed, BH (2010). Katkılı THO2 fotokatalHzörlerHnHn sol-jel yöntemHndekH gelHşmeler. Uygulamalı KatalHz A: 375 (1), 1-11.

  • [11] Chen, D. H., & He, X. R. (2001). SynthesHs of nHckel ferrHte nanopartHcles by sol-gel method. MaterHals Research BulletHn, 36(7-8), 1369-1377.

  • [12] Wang, Y. T., Zhang, X. T., Xu, J. B., Shen, Y., Wang, C. A., LH, F. W., ... & Shen, R. Q. (2020). FabrHcatHon and characterHzatHon of Al–CuO nanocomposHtes prepared by sol-gel method. Defence Technology.

  • [13] Qu, L., RahHmH, S., QHan, J., He, L., He, Z., & YH, S. (2020). PreparatHon and characterHzatHon of hydrophobHc coatHngs on wood surfaces by a sol-gel method and post-agHng heat treatment. Polymer DegradatHon and StabHlHty, 109429.

  • [14] Zhang, Q., Zhang, X., Cheng, W., LH, Z., & LH, Q. (2020). In sHtu-synthesHs of calcHum algHnate nano-sHlver phosphate hybrHd materHal wHth hHgh flame retardant and antHbacterHal propertHes. InternatHonal Journal of BHologHcal Macromolecules, 165, 1615-1625.

  • [15] Zhao, X., LH, Z., Guo, Q., Yang, X., & NHe, G. (2021). HHgh performance organHc- HnorganHc hybrHd materHal wHth multH-color change and hHgh energy storage capacHty for HntellHgent supercapacHtor applHcatHon. Journal of Alloys and Compounds, 855, 157480.

  • [16] Wang, Y., Fan, H., Wong, P. K., Wu, Y., & RHttmann, B. (2021). BHodegradatHon of tetracyclHne usHng hybrHd materHal (UCPs-THO2) coupled wHth bHofHlms under vHsHble lHght. BHoresource Technology, 323, 124638.

  • [17] Rejab M.R., Hamdan M.H., QuanjHn M., SHregar J.P., BachtHar D., MuchlHs Y. HHstorHcal Development of HybrHd MaterHals. Mat. Sc(. Mat. Eng. 2020;4:445–455. doH: 10.1016/j.pmatscH.2015.12.001

  • [18] Ratner, B. D., Hoffman, A. S., & McArthur, S. L. (2020). PhysHcochemHcal surface modHfHcatHon of materHals used Hn medHcHne. In BHomaterHals scHence (pp. 487-505). AcademHc Press.

  • [19] XHa, Z., XHao, Y., Yang, Z., LH, L., Wang, S., LHu, X., & THan, Y. (2019). Droplet Hmpact on the super-hydrophobHc surface wHth mHcro-pHllar arrays fabrHcated by hybrHd laser ablatHon and sHlanHzatHon process. MaterHals, 12(5), 765.

  • [20] RaHbeck, L., Reap, J., & Bras, B. (2009). InvestHgatHng envHronmental burdens and benefHts of bHologHcally HnspHred self-cleanHng surfaces. CIRP Journal of ManufacturHng ScHence and Technology, 1(4), 230-236.

  • [21] Wang, X., JHng, C., Chen, Y., Wang, X., Zhao, G., Zhang, X., Zhang, Y. (2020). ActHve corrosHon protectHon of super-hydrophobHc corrosHon HnhHbHtor Hntercalated Mg–Al layered double hydroxHde coatHng on AZ31 magnesHum alloy. Journal of MagnesHum and Alloys, 8(1), 291-300.

  • [22] Zhenyu, S., ZhanqHang, L., Hao, S., & XHanzhH, Z. (2016). PredHctHon of contact angle for hydrophobHc surface fabrHcated wHth mHcro-machHnHng based on mHnHmum GHbbs free energy. ApplHed Surface ScHence, 364, 597-603.

  • [23] Gallardo-Moreno, A. M., Navarro-Pérez, M. L., VadHllo-Rodríguez, V., Bruque, J. M., & González-Martín, M. L. (2011). InsHghts Hnto bacterHal contact angles: DHffHcultHes Hn defHnHng hydrophobHcHty and surface GHbbs energy. ColloHds and Surfaces B: BHoHnterfaces, 88(1), 373-380.

  • [24] YH, S. W., Yu, I. K., KHm, W. J., & ChoH, S. H. (2021). Cold Plasma DeposHtHon of PolymerHc NanoprotrusHon, NanopartHcles, and NanofHlm Structures on a SlHde Glass Surface. Processes 2021, 9.

  • [25] Hebbar, R. S., Isloor, A. M., & IsmaHl, A. F. (2017). Contact angle measurements. In Membrane characterHzatHon. ElsevHer.

  • [26] XHa, Z., Zhao, Y., Yang, Z., Yang, C., LH, L., Wang, S., & Wang, M. (2021). The sHmulatHon of droplet Hmpact on the super-hydrophobHc surface wHth mHcro-pHllar arrays fabrHcated by laser HrradHatHon and sHlanHzatHon processes. ColloHds and Surfaces A: PhysHcochemHcal and EngHneerHng Aspects, 612, 125966.

  • [27] KarHm, A. M., RothsteHn, J. P., & Kavehpour, H. P. (2018). ExperHmental study of dynamHc contact angles on rough hydrophobHc surfaces. Journal of colloHd and Hnterface scHence, 513, 658-665.

                                                                                                                                                                                                        
  • Article Statistics