Yerel olmayan elastisite teorisi kullanılarak basit mesnetli Timoshenko nanokirişlerinin çökmeleri üzerinde kesit etkisi

Author :  

Year-Number: 2022-2
Yayımlanma Tarihi: 2022-07-06 12:47:01.0
Language : İngilizce
Konu : Kompozit
Number of pages: 134-146
Mendeley EndNote Alıntı Yap

Abstract

Tek doğrultulu ve farklı kesit şekilli nanomalzemelerin nano-elektro-mekanik sistemler (NEMS) teknolojisindeki geniş kullanımı nedeniyle bu tip malzemelerin mekanik davranışlarının bilinmesi önemli hale gelmiştir. Tek doğrultulu nanomalzemeler kiriş gibi uzunlamasına mekanik elemanlarla modellenebilir. Ayrıca, klasik kiriş modellerinin nanoyapıların mekaniğinde gerçekçi olmayan sonuçlar vermesi nedeniyle boyut etkisine dayanan formülasyonların kullanıldığı belirtilmelidir. Bu motivasyonla, bu çalışma nanoölçekli kirişlerin boyut etkili statik çökme davranışına kesit türünün etkisini ele almaktadır. Boyut etkisi olarak yerel olmayan elastisite teorisi kullanılmıştır. Nanokirişin mekanik davranışını daha gerçekçi araştırabilmek adına, kayma etkilerini gözetmesi nedeniyle Timoshenko kiriş teorisi kullanılmıştır. Buna göre, statik analizin diferansiyel denklemi, düzgün yayılı ve tekil gibi farklı yük tipleri altındaki her iki ucu basit mesnetli nanokirişler için çözülmüştür. Ardından, kare, daire, kutu ve halka kesitli nanokirişler için çökme değerleri ve çökme oranları sunulmuş ve sayısal sonuçlar detaylıca tartışılmıştır.

Keywords

Abstract

To know the mechanical behavior of such materials has been become important due to the wide use of one-dimensional and different cross-sectional nanomaterials in nano-electro-mechanical systems (NEMS) technology. One-dimensional nanomaterials can be modelled with longitudinal mechanical elements like beams. Also, in the mechanics of nanostructures, it should be specified that formulations based on size effect are used since classical beam models do not give realistic results. With this motivation, this study examines the effect of section type on the size dependent static deflection behavior of nano scaled beams. The nonlocal elasticity theory is employed as the size effect. In order to study the mechanical behavior of nanobeam more realistically, Timoshenko beam theory is formulated because it includes the shear effect. According to this, the differential equation of static analysis is solved for simply supported nanobeams under different load types such as uniform distributed and concentrated. Then, deflection values and deflection ratios ​​for nanobeams with square, circular, box, and hoop section are presented. Finally, a detailed discussions for numerical results are given.

Keywords


  • [1] H. M. Numanoğlu, B. Akgöz, and O. Civalek, “On dynamic analysis of nanorods”, International Journal of Engineering Science, vol. 130, pp. 33-50, 2018.

  • [2] O. Civalek and H. M. Numanoğlu, “Nonlocal finite element analysis for axial vibration of embedded love– bishop nanorods”, International Journal of Mechanical Sciences, vol. 188, pp. 105939, 2020.

  • [3] H. M. Numanoğlu and O. Civalek, “On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM”, International Journal of Mechanical Sciences, vol. 161-162, pp. 105076, 2019.

  • [4] A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity”, International Journal of Engineering Science, vol. 10, pp. 233-248, 1972.

  • [5] M. Aydogdu, “Axial vibration of the nanorods with the nonlocal continuum rod model”, Physica E: Low- dimensional Systems and Nanostructures, vol. 41, pp. 861-864, 2009.

  • [6] I. Ecsedi and A. Baksa, “Free axial vibration of nanorods with elastic medium interaction based on nonlocal elasticity and Rayleigh model”, Mechanics Research Communications, vol. 86, pp. 1-4, 2017.

  • [7] Z. M. Islam, P. Jia, and C. W. Lim, “Torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory”, International Journal of Applied Mechanics, vol. 6, pp. 1450011, 2014.

  • [8] H.M. Numanoğlu and O. Civalek, “Novel size-dependent finite element formulation for modal analysis of cracked nanorods”, Materials Today Communications, vol. 31, pp. 103545, 2022.

  • [9] Q. Wang and V. K. Varadan, “Vibration of carbon nanotubes studied using nonlocal continuum mechanics”, Smart Materials and Structures, vol. 15, pp. 659, 2006.

  • [10] Q. Wang and K. M. Liew, “Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures”, Physics Letters A, vol. 363, pp. 236-242, 2007.

  • [11] J. N. Reddy and S. D. Pang, “Nonlocal continuum theories of beams for the analysis of carbon nanotubes”, Journal of Applied Physics, vol. 103, pp. 023511, 2008.

  • [12] S.C. Pradhan, J.K. Phadikar, “Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory”, Structural Engineering and Mechanics, vol. 33, pp. 193-213, 2009.

  • [13] O. Civalek and Ç. Demir, “Bending analysis of microtubules using Nonlocal Euler–Bernoulli beam theory”, Applied Mathematical Modelling, vol. 35, pp. 2053-2067, 2011.

  • [14] R. Ansari and H. Ramezannezhad, “Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects”. Physica E: Low-dimensional Systems and Nanostructures, vol. 43, pp. 1171-1178, 2011.

  • [15] H. T. Thai, “A nonlocal beam theory for bending, buckling and vibration of nanobeams”, International Journal of Engineering Science, vol. 52, pp. 56-64, 2012.

  • [16] S. C. Pradhan and U. Mandal, “Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect”, Physica E: Low-dimensional Systems and Nanostructures, vol. 53, pp. 223-232, 2013.

  • [17] C.P. Wu and W.W. Lai, “Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method”, Physica E: Low-dimensional Systems and Nanostructures, vol. 68, pp. 8-21, 2015.

  • [18] M. A. Eltaher, A. E. Samir, F. F. and Mahmoud, “Static and stability analysis of nonlocal functionally graded nanobeams”, Composite Structures, vol. 96, pp. 82-88, 2013.

  • [19] M. A. Eltaher, A. Khairy, A. M. Sadoun, and F. A. Omar, “Static and buckling analysis of functionally graded Timoshenko nanobeams”, Applied Mathematics and Computation, vol. 229, pp. 283-295, 2014.

  • [20] Ç. Demir and O. Civalek, “On the analysis of microbeams”, International Journal of Engineering Science, vol. 121, pp. 14-33, 2017.

  • [21] H. M. Numanoğlu, “Thermal vibration of zinc oxide nanowires by using nonlocal finite element method”, International Journal of Engineering and Applied Sciences, vol. 12, pp. 99-110, 2020.

  • [23] H. M. Numanoğlu, K. Mercan, and O. Civalek, “Finite element model and size-dependent stability analysis of boron nitride and silicon carbide nanowires/nanotubes”, Scientia Iranica Transactions A: Civil Engineering, vol. 26, pp. 2079-2099, 2019.

  • [24] S. Lilkova-Markova and D. Lolov, “Buckling analysis of axially loaded nanobeams resting on a rotational elastic foundation”, In Proc. 1st International Symposium on Characterization, 2021, pp. 17-22.

  • [25] L. Behera and S. Chakraverty, “Application of differential quadrature method in free vibration analysis of nanobeams based on various nonlocal theories”, Computers & Mathematics with Applications, vol. 69, pp. 1444-1462, 2015.

  • [26] R. Barretta, L. Feo, R. Luciano, and F.M. de Sciarra, “An Eringen-like model for Timoshenko nanobeams”, Composite Structures, vol. 139, pp. 104-110, 2016.

  • [27] H. M. Numanoğlu, H. Ersoy, O. Civalek, and A. J. M. Ferreira, “Derivation of nonlocal FEM formulation for thermo-elastic Timoshenko beams on elastic matrix”, Composite Structures, vol. 273, pp. 114292, 2021.

  • [28] H. M. Numanoğlu, H. Ersoy, B. Akgöz, and O. Civalek, “A new eigenvalue problem solver for thermo‐ mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method”, Mathematical Methods in the Applied Sciences, vol. 45, pp. 2592-2614, 2022.

  • [29] Ç. Işık, “Nano ve mikro yapıların yerel olmayan elastisite teorisi ile eğilme ve titreşim hesabı”, M. S. thesis, Akdeniz University, Antalya, 2011.

  • [30] H. M. Numanoğlu, “Dynamic analysis of nano continuous and discrete structures based on nonlocal finite element formulation (NL-FEM)”, M. S. thesis, Akdeniz University, Antalya, 2019, (In Turkish).

  • [31] H. M. Numanoğlu, H. Ersoy, B. Akgöz, and O. Civalek, “Small size and rotary inertia effects on the natural frequencies of carbon nanotubes.”, Curved and Layered Structures, vol. 5, pp. 273-279, 2018.

  • [33] S. Ceballes, B. E. Saunders, and A. Abdelkafi, “Nonlocal Timoshenko modeling effectiveness for carbon nanotube-based mass sensors”, European Journal of Mechanics - A/Solids, vol. 92, pp. 104462, 2022.

  • [34] H. M. Numanoğlu and O. Civalek “On the dynamics of small-sized structures”, International Journal of Engineering Science, vol. 145, pp. 103164, 2019.

  • [36] Y.T. Beni, “Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling”, Mechanics Research Communications, vol. 71, pp. 67-80, 2016.

  • [37] B. Akgöz, O. Civalek, “Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment”, Composites Part B: Engineering, vol. 150, pp. 68-77, 2018.

  • [39] L. Chu, G. Dui, Y. Zheng, “Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory”, European Journal of Mechanics - A/Solids, vol. 82, pp. 103999, 2020.

  • [40] Ö. Civalek, O. Kiracıoğlu, “Free vibration analysis of Timoshenko beams by DSC method”, International Journal for Numerical Methods in Biomedical Engineering, vol. 12, pp. 1890-1898, 2010.

  • [41] Ö. Civalek, M. Avcar, “Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method”, Engineering with Computers, 2020.

  • [42] K. Mercan, Ç. Demir, Ö. Civalek, “Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique”, Curved and Layered Structures, vol. 3, pp. 82-90, 2016.

  • [43] Ö. Civalek, A. K. Baltacıoğlu, “Free vibration analysis of laminated and FGM composite annular sector plates”, Composites Part B: Engineering, vol. 157, pp. 182-194, 2019.

  • [44] M. Karimiasl, F. Ebrahimi, B. Akgöz, “Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading”, Composite Structures, vol. 223, pp. 110988, 2019.

  • [45] G. R. Cowper, “The shear coefficient in Timoshenko’s beam theory”, Journal of Applied Mechanics, vol. 33, pp. 335-340, 1966.

                                                                                                                                                                                                        
  • Article Statistics