PEM Yakıt Pili Bipolar Plakaları için Ni-Co-Sn İnce Filmlerin Elektrodepozisyonu ve Karakterizasyonu

Author :  

Year-Number: 2022-3
Yayımlanma Tarihi: 2022-12-26 22:58:36.0
Language : İngilizce
Konu : Malzeme Bilimi ve Mühendisliği
Number of pages: 239-250
Mendeley EndNote Alıntı Yap

Abstract

Bipolar plakalar, yüksek mekanik dayanım ve işlenebilirlik gibi özellikleri ile PEM yakıt pili cihazının gaz akışında ve mekanik kararlılığında hayati bir rol oynamaktadır. Metalik bipolar plakaların avantajları olmasına rağmen, çoğu metalik bipolar plaka kimyasal stabiliteden yoksundur. Bu nedenle, düşük maliyetli metalik bipolar plaka üretmek için, metalik bipolar plakaların yüzeyine koruyucu bir kaplama uygulanmalıdır. Bu çalışmada, PEM yakıt hücresi bipolar plakaları için SS316 folyoları üzerine elektrodepozisyon tekniği ile Ni-Co-Sn bazlı ince filmler kaplanmıştır. Uygulanan doğru akım yoğunluğunun bir fonksiyonu olarak Ni-Co-Sn katmanlarının elektrodepozisyonu için basit sülfat bazlı elektrolit kullanılmıştır. Sistemin elektrokimyasal indirgeme mekanizması döngüsel voltametri ile incelenmiştir. Kaplamaların yapısal karakterizasyonu, morfolojik karakterizasyonu, kompozisyon analizleri, sertliği ve elektrokimyasal davranışı incelenmiştir.

Keywords

Abstract

Bipolar plates play a vital role in the gas flow and the mechanical stability of the PEM fuel cell device with their high mechanical strength and machinability properties. Although metallic bipolar plates have advantages, most metallic bipolar plates lack chemical stability. For that reason, to produce low-cost metallic bipolar plates, a protective coating must be applied to the surface of the metallic bipolar plates. In this study, Ni-Co-Sn based thin film coatings were deposited by electrodeposition technique onto SS316 foils for the PEM fuel cell bipolar plates. A simple sulfate-based electrolyte was used for the electrodeposition of the Ni-Co-Sn layers as a function of applied direct current density. The electrochemical reduction mechanism of the system was studied with cyclic voltammetry. The structural characterization, the morphological characterization, the composition analyses, the hardness, and the electrochemical behavior of the coatings were investigated.

Keywords


  • [1] X. Li, C. J. Raorane, C. Xia, Y. Wu, T. K. N. Tran, and T. Khademi, “Latest approaches on green hydrogen as a potential source of renewable energy towards sustainable energy: Spotlighting of recent innovations, challenges, and future insights,” Fuel, vol. 334, no. P1, p. 126684, 2023, doi: 10.1016/j.fuel.2022.126684.

  • [2] R. Fernández-González, F. Puime-Guillén, and M. Panait, “Multilevel governance, PV solar energy, and entrepreneurship: the generation of green hydrogen as a fuel of renewable origin,” Util. Policy, vol. 79, p. 101438, 2022, doi: 10.1016/j.jup.2022.101438.

  • [3] H. Wu, “A review of recent development : Transport and performance modeling of PEM fuel cells,” Appl. Energy, vol. 165, pp. 81–106, 2016, doi: 10.1016/j.apenergy.2015.12.075.

  • [4] Y. Wang, D. Fernanda, R. Diaz, K. S. Chen, Z. Wang, and X. C. Adroher, “Materials , technological status , and fundamentals of PEM fuel cells – A review,” Mater. Today, vol. 32, pp. 178–203, 2020, doi: 10.1016/j.mattod.2019.06.005.

  • [5] S. M. Haile, “Fuel cell materials and components” vol. 51, pp. 5981–6000, 2003, doi: 10.1016/j.actamat.2003.08.004.

  • [6] F. A. De Bruijn, V. A. T. Dam, and G. J. M. Janssen, “Review : Durability and Degradation Issues of PEM Fuel Cell Components,” no. 1, pp. 3–22, 2008, doi: 10.1002/fuce.200700053.

  • [7] N. Shaigan, X. Z. Yuan, F. Girard, K. Fatih, and M. Robertson, “Standardized testing framework for quality control of fuel cell bipolar plates,” J. Power Sources, vol. 482, p. 228972, 2021, doi: 10.1016/j.jpowsour.2020.228972.

  • [8] Q. Liu, F. Lan, C. Zeng, J. Chen, and J. Wang, “Review article A review of proton exchange membrane fuel cell ’ s bipolar plate design and fabrication process,” J. Power Sources, vol. 538, p. 231543, 2022, doi: 10.1016/j.jpowsour.2022.231543.

  • [9] S. Wu et al., “A review of modified metal bipolar plates for proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 46, no. 12, pp. 8672–8701, 2021, doi: 10.1016/j.ijhydene.2020.12.074.

  • [10] K. Il Jeong, J. Oh, S. A. Song, D. Lee, D. G. Lee, and S. S. Kim, “A review of composite bipolar plates in proton exchange membrane fuel cells: Electrical properties and gas permeability,” Compos. Struct., vol. 262, p. 113617, 2021, doi: 10.1016/j.compstruct.2021.113617.

  • [11] S. R. Dhakate, S. Sharma, M. Borah, R. B. Mathur, and T. L. Dhami, “Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell,” Int. J. Hydrogen Energy, vol. 33, no. 23, pp. 7146–7152, 2008, doi: 10.1016/j.ijhydene.2008.09.004.

  • [12] M. Kumagai, S. Myung, Y. Katada, and H. Yashiro, “Electrochimica Acta Stability of type 310S stainless steel bipolar plates tested at various current densities in proton exchange membrane fuel cells,” Electrochim. Acta, vol. 211, pp. 754–760, 2016, doi: 10.1016/j.electacta.2016.06.106.

  • [13] Y. Leng, P. Ming, D. Yang, and C. Zhang, “Stainless steel bipolar plates for proton exchange membrane fuel cells : Materials , flow channel design and forming processes,” J. Power Sources, vol. 451, p. 227783, 2020, doi: 10.1016/j.jpowsour.2020.227783.

  • [14] H. Y. Jung, S. Y. Huang, P. Ganesan, and B. N. Popov, “Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation,” J. Power Sources, vol. 194, no. 2, pp. 972–975, 2009, doi: 10.1016/j.jpowsour.2009.06.030.

  • [15] J. Sudagar, J. Lian, and W. Sha, “Electroless nickel , alloy , composite and nano coatings – A critical review,” J. Alloys Compd., vol. 571, pp. 183–204, 2013, doi: 10.1016/j.jallcom.2013.03.107.

  • [16] V. Torabinejad, M. Aliofkhazraei, S. Assareh, M. H. Allahyarzadeh, and A. S. Rouhaghdam, “Electrodeposition of Ni-Fe alloys , composites , and nano coatings - A review,” J. Alloys Compd., vol. 691, pp. 841–859, 2017, doi: 10.1016/j.jallcom.2016.08.329.

  • [17] S. Shriram, S. Mohan, and N. G. Renganathan, “Electrodeposition of Nanocrystalline Nickel- a Brief Review,” Int. J. Surf. Eng. Coatings, vol. 2967, no. May, 2017, doi: 10.1080/00202967.2000.11871337.

  • [18] V. Rajaei, H. Rashtchi, K. Raeissi, and M. Shamanian, “The study of Ni-based nano-crystalline and amorphous alloy coatings on AISI 304 stainless steel for PEM fuel cell bipolar plate application,” Int. J. Hydrogen Energy, vol. 42, no. 20, pp. 14264–14278, 2017, doi: 10.1016/j.ijhydene.2017.04.098.

  • [19] U. K. Chanda, A. Behera, S. Roy, and S. Pati, “Evaluation of Ni-Cr-P coatings electrodeposited on low carbon steel bipolar plates for polymer electrolyte membrane fuel cell,” Int. J. Hydrogen Energy, vol. 43, no. 52, pp. 23430–23440, 2018, doi: 10.1016/j.ijhydene.2018.10.218.

  • [20] U. K. Chanda, S. Prakash, A. K. Pandey, S. Roy, and S. Pati, “Electrodeposited Ni-Mo-Cr-P coatings for AISI 1020 steel bipolar plates,” Int. J. Hydrogen Energy, vol. 45, no. 41, pp. 21892–21904, 2020, doi: 10.1016/j.ijhydene.2020.06.014.

                                                                                                                                                                                                        
  • Article Statistics