Pudinglerde İleri Glikasyon Son Ürünleri Öncüllerinin in Vitro Sindirim Sisteminde Biyoerişilebilirliklerinin Belirlenmesi

Author :  

Year-Number: 2022-1
Yayımlanma Tarihi: 2022-02-23 20:57:53.0
Language : İngilizce
Konu : Kimyasal Karakterizasyon
Number of pages: 49-59
Mendeley EndNote Alıntı Yap

Abstract

İleri glikasyon son ürünleri(AGE) potansiyel kimyasal tehlikeli bileşiklerdir. Sindirim sistemi koşulları AGE oluşumuna etki edebilir. Pudinglerin düşük AGE içeriğine sahip olduğu bilinmesine rağmen, in vitro sindirimin AGE oluşumuna etkisi bilinmemektedir. Bu çalışma in vitro sindirim koşullarında pudinglerde AGE öncülü olan Glioksal(GO) ve metilglioksal(MGO) oluşuşumun belirlenmesini amaçlamaktadır. Bu amaçla, pudinglerde GO ve MGO seviyeleri HPLC ile belirlenmiştir. Örneklerin GO ve MGO miktarları sırasıyla 6.3 ila 13.8 µg /100 g ve 5.8 ila 24.4 8 µg /100 g’dır. In vitro sindirimden sonra GO ve MGO seviyeleri sırasıyla 7.4 ila 24.4 8 µg /100 g ve 8.5 ila 21.6 8 µg /100 g’a kadar artmıştır. Bizim sonuçlarımız pudinglerde süt proteinlerinin bağlama kapasitesi, nişastanın su tutma kapasitesi, düşük ısıl işlem ve şeker türünden dolayı AGE öncüllerinin düşük olabileceğini ortaya çıkarmıştır.

Keywords

Abstract

Advanced glycation end products (AGEs) are potentially chemical hazardous compounds. Digestive system condtions may effect AGEs formation.  Despite puddings have low AGEs content, the effect of in vitro digestion on AGEs formation is unknown. This study aims to determine the formation of AGEs precursors as Glyoxal (GO) and Methylglyoxal (MGO) in puddings under in vitro digestion. For this purpose, GO and MGO levels of puddings were determined by High-Performance Liquid Chromatography. The amount of GO and MGO in samples ranged between 6.3 to 18.8 µg /100 g and 5.8 to 24.4 µg / 100g, respectively. After in vitro digestion, GO and MGO levels were increased to between 7.4 to 24.4 µg / 100g and 8.5 to 31.6 µg/100 g, respectively. Our results revealed that puddings have low AGEs precursors this may be due to bounding capability of milk proteins, water binding capacity of starch, low heat treatment and sugar type.

Keywords


  • [1] Y. Zhu, H. Snooks, and S. Sang, “Complexity of Advanced Glycation End Products in Foods: Where Are We Now?,” Journal of Agricultural and Food Chemistry, vol. 66, no. 6, pp. 1325–1329, Feb. 2018, doi: 10.1021/ACS.JAFC.7B05955.

  • [2] M. Snelson and M. T. Coughlan, “Dietary Advanced Glycation End Products: Digestion, Metabolism and Modulation of Gut Microbial Ecology,” Nutrients 2019, Vol. 11, Page 215, vol. 11, no. 2, p. 215, Jan. 2019, doi: 10.3390/NU11020215.

  • [3] A. Perrone, A. Giovino, J. Benny, and F. Martinelli, “Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects,” Oxidative Medicine and Cellular Longevity, vol. 2020, 2020, doi: 10.1155/2020/3818196.

  • [4] Q. Wei, T. Liu, and D. W. Sun, “Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review,” Trends in Food Science & Technology, vol. 82, pp. 32–45, Dec. 2018, doi: 10.1016/J.TIFS.2018.09.020.

  • [5] Q. Zhang, Y. Wang, and L. Fu, “Dietary advanced glycation end-products: Perspectives linking food processing with health implications,” Comprehensive Reviews in Food Science and Food Safety, vol. 19, no. 5, pp. 2559–2587, Sep. 2020, doi: 10.1111/1541-4337.12593.

  • [6] S. Wang, Chemical Hazards in Thermally-Processed Foods. Springer, 2019.

  • [7] J. Uribarri et al., “Advanced glycation end products in foods and a practical guide to their reduction in the diet,” Journal of the American Dietetic Association, vol. 110, no. 6, pp. 911–916, 2010.

  • [8] M. E. Garay-Sevilla, M. S. Beeri, M. P. de La Maza, A. Rojas, S. Salazar-Villanea, and J. Uribarri, “The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review,” Nutrition Research Reviews, vol. 33, no. 2, pp. 298–311, Dec. 2020, doi: 10.1017/S0954422420000104.

  • [9] C. Nie, Y. Li, H. Qian, H. Ying, and L. Wang, “Advanced glycation end products in food and their effects on intestinal tract,” https://doi.org/10.1080/10408398.2020.1863904, 2020, doi: 10.1080/10408398.2020.1863904.

  • [10] W. Rungratanawanich, Y. Qu, X. Wang, M. M. Essa, and B. J. Song, “Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury,” Experimental & Molecular Medicine 2021 53:2, vol. 53, no. 2, pp. 168–188, Feb. 2021, doi: 10.1038/s12276-021-00561-7.

  • [11] K. Nowotny, D. Schröter, M. Schreiner, and T. Grune, “Dietary advanced glycation end products and their relevance for human health,” Ageing Research Reviews, vol. 47, pp. 55–66, Nov. 2018, doi: 10.1016/J.ARR.2018.06.005.

  • [12] K. Maasen, J. L. J. M. Scheijen, A. Opperhuizen, C. D. A. Stehouwer, M. M. van Greevenbroek, and C. G. Schalkwijk, “Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls,” Food Chemistry, vol. 339, p. 128063, 2020.

  • [13] A. A. Abdo Qasem, M. S. Alamri, A. A. Mohamed, S. Hussain, K. Mahmood, and M. A. Ibraheem, “High Soluble-Fiber Pudding: Formulation, Processing, Texture and Sensory Properties,” Journal of Food Processing and Preservation, vol. 41, no. 3, p. e12931, Jun. 2017, doi: 10.1111/JFPP.12931.

  • [14] J. A. Mennella, S. Finkbeiner, and D. R. Reed, “The proof is in the pudding: children prefer lower fat but higher sugar than do mothers,” International Journal of Obesity 2012 36:10, vol. 36, no. 10, pp. 1285–1291, May 2012, doi: 10.1038/ijo.2012.51.

  • [15] “Maltitol endows foods with lower 3-deoxyglucosone content and less RAGE agonism as a sweetener against sucrose,” Glycative Stress Research, vol. 1, no. 2, pp. 025–031, 2014, doi: 10.24659/GSR.1.2_025.

  • [16] A. Hamzalıoğlu and V. Gökmen, “Potential reactions of thermal process contaminants during digestion,” Trends in Food Science & Technology, vol. 106, pp. 198–208, Dec. 2020, doi: 10.1016/J.TIFS.2020.10.014.

  • [17] K.P. Mahar, M.Y. Khuhawar, T.G. Kazi , K. Abbasi, A.H. Channer, “Quantitative analysis of glyoxal, methyl glyoxal and dimethyl glyoxal from foods, beverages and wines using HPLC and 4-nitro-1, 2phenylenediamine as derivatizing reagent.” Asian J Chem, vol. 22, no 9, pp. 6983-6990, 2010.

  • [18] S. Cengiz, C. Kişmiroğlu, N. Cebi, J. Catak, and M. Yaman, “Determination of the most potent precursors of advanced glycation end products (AGEs) in chips, crackers, and breakfast cereals by high performance liquid chromatography (HPLC) using precolumn derivatization with 4-nitro-1, 2-phenlenediamine,” Microchemical Journal, vol. 158, p. 105170, 2020.

  • [19] M. Yaman and Ö. F. Mızrak, “Determination and evaluation of in vitro bioaccessibility of the pyridoxal, pyridoxine, and pyridoxamine forms of vitamin B6 in cereal-based baby foods,” Food chemistry, vol. 298, p. 125042, 2019.

  • [20] M. L. Richmond, S. C. C. Brandao, J. I. Gray, P. Markakis, and C. M. Stine, “Analysis of simple sugars and sorbitol in fruit by high-performance liquid chromatography,” Journal of Agricultural and Food Chemistry, vol. 29, no. 1, pp. 4–7, 2002, doi: 10.1021/JF00103A002.

  • [21] J. A. Lin, C. H. Wu, and G. C. Yen, “Perspective of Advanced Glycation End Products on Human Health,” Journal of Agricultural and Food Chemistry, vol. 66, no. 9, pp. 2065–2070, Mar. 2018, doi: 10.1021/ACS.JAFC.7B05943.

  • [22] M. Yaman, “İleri Glikasyon Son Ürünlerinin (AGEs) Öncüllerinin in Vitro Biyoerişilebilirliklerinin Bazı Gıdalarda Belirlenmesi,” European Journal of Science and Technology, no. 27, pp. 598–604, 2021, doi: 10.31590/ejosat.990119.

  • [23] Q. Zhao et al., “Interactions between soluble soybean polysaccharide and starch during the gelatinization and retrogradation: Effects of selected starch varieties,” Food Hydrocolloids, vol. 118, p. 106765, Sep. 2021, doi: 10.1016/J.FOODHYD.2021.106765.

  • [24] R. gang Zhu et al., “Temperature effect on formation of advanced glycation end products in infant formula milk powder,” International Dairy Journal, vol. 77, pp. 1–9, Feb. 2018, doi: 10.1016/J.IDAIRYJ.2017.09.005.

  • [25] M. Yaman, M. Demirci, E. Ede-Cintesun, E. Kurt, and Ö. Faruk Mızrak, “Investigation of formation of well-known AGEs precursors in cookies using an in vitro simulated gastrointestinal digestive system,” Food Chemistry, vol. 373, p. 131451, Mar. 2022, doi: 10.1016/J.FOODCHEM.2021.131451.

  • [26] T. M. Amrein, L. Andres, G. G. G. Manzardo, and R. Amadò, “Investigations on the Promoting Effect of Ammonium Hydrogencarbonate on the Formation of Acrylamide in Model Systems,” Journal of Agricultural and Food Chemistry, vol. 54, no. 26, pp. 10253–10261, Dec. 2006, doi: 10.1021/JF0625860.

  • [27] B. Weigand, S. A. Palma-Duran, K. Sweazea, C. Lee, and N. Tasevska, “Association of Dietary Fructose With Serum Advanced Glycation End Products in a Controlled Feeding Study of Healthy Adults,” Current Developments in Nutrition, vol. 5, no. Supplement_2, pp. 65–65, Jun. 2021, doi: 10.1093/CDN/NZAB033_065.

  • [28] H. E. Nursten, “The Maillard Reaction,” May 2005, doi: 10.1039/9781847552570.

  • [29] B. Nieva-Echevarría, E. Goicoechea, and M. D. Guillén, “Food lipid oxidation under gastrointestinal digestion conditions: A review,” https://doi.org/10.1080/10408398.2018.1538931, vol. 60, no. 3, pp. 461–478, Feb. 2018, doi: 10.1080/10408398.2018.1538931.

                                                                                                                                                                                                        
  • Article Statistics